
A lifetime as an amateur compositor

David Walden

[This is a preliminary draft. The content
may change by the time of the PracTEX06
conference presentation and/or the confer-
ence proceedings.]

The first section of this paper briefly relates my expe-
rience writing and printing documents until I began
to use TEX. The second section summarizes why
I now use TEX and gives examples of its benefits,
particularly writing books. Section 3 touches on the
advantage of being able to use a separate powerful
text editor, since TEX does not require use of a built
in editor. Go straight to section 2 if you want skip
my reminiscences that are not directly related to TEX.

1 First fifty years

1.1 Pre-computers

For some reason, I have always been interested in
putting marks on paper — as with many people, my
first work was with crayons, finger paints, and 1 inch,
ruled “primary paper” and thick “primary pencils.”1

But it was not long before I moved on to more
publication-like processes. Our church had a mimeo-
graph machine and my parents were involved with
producing the Sunday programs, and my parents
both taught in the public schools2 where they pre-
pared handouts to students using ditto machines. I
was a little involved with reproducing such materials
at least throughout my teen years.

My father had an Underwood manual typewriter
upon which he typed and on which I banged with
a few fingers as a child. Later, he obtained a Royal
manual typewriter on which I typed with ten fingers
from the time I took a typing class two hours a
week for one term during my sophomore year of high
school. Ever since taking that typing class, I have
been typing, often for reproduction, more or less
constantly: so much so that when my son was a
child and people asked him what his father did, my
son’s answer was, “He is a typist.” After I went
away to college, I moved to a Smith Corona electric
portable typewriter; and when I entered the work

1 The oral presentation version of this paper given at the
PracTEX06 conference included a number of photographs that
are not included here because I did not seek permission to use
them.

2 Supported by the town government.

world, we used IBM Selectric typewriters with their
changeable type balls.

However, I wasn’t a mistake-free typist, and I
had much use for the tools of typewriter correction
using carbon paper and other typewriter-base me-
dia: erasers, stuff to patch a mimeograph stencil, a
razor blade to scrape the ink off of a ditto master,
and KO-REC-TYPE paper and Snopake correction
fluid to paint over typing so characters could be re-
typed correctly on pages that would be reproduced
on Xerox copiers.

At http://www.tpub-products.com/, I found
a document for sale that describes the duties of a
military “religious program (RP) specialist” (an as-
sistant or secretary to a chaplain), and it includes
instructions for using Ditto masters; I quote it below.
This description represents about the mid-level of
complexity of pre-computer desktop “publishing” —
more complicated than carbon paper (but not much)
and slightly less complicated than a stencil machine.

Before proceeding to an explanation of stencil
preparation, the Ditto master will be discussed.
The white Ditto master (overlay) is attached to
a sheet of paper which is thickly coated with a
carbon substance. Typing and hand- stylus im-
pressions are made on the overlay and cause the
carbon substance to be imprinted on the reverse
side of the master. When the overlay is attached
to the Ditto machine, the carbon-coated sheet is
detached. The carbon impressions of the Ditto
master are moistened by the duplicating fluid as
the drum is rotated, which in turn transfers the
carbon dye to the paper being fed into the ma-
chine. This transfer yields an exact reproduction
of the master.

Preparing a neat and accurate Ditto master
stencil is one of the more important secretarial
tasks that the RP will perform. Command Reli-
gious Program announcements are often distrib-
uted to command personnel through the use of
Ditto copies. Just as the appearance of the of-
fice of the chaplain makes an instant and lasting
impression, an information “flyer” or announce-
ment will also leave lasting impressions. If the an-
nouncement is neatly prepared with concise and
accurate information, it will probably give people
the impression that the office of the chaplain is
an efficient and caring organization. Therefore,
it is important that the RP prepare each Ditto

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1001

David Walden

master with these thoughts in mind. The follow-
ing helpful hints should aid the RP in preparing
Ditto masters:

• The “flimsy” sheet of paper that is inserted
between the Ditto overlay and the carbon at-
tachment MUST be removed before it is possible
to have impressions transferred to the back of
the overlay. NOTE: If there is some art-work
involved, the “flimsy” may be left between the
overlay and carbon attachment while the art-
work is penciled lightly onto the overlay. The art-
work can then be retraced with a stylus when the
“flimsy” is removed. If an electric typewriter is
being used, a test line should be typed on a Ditto
master at each typing pressure setting. A copy
should then be run and the RP can select the pres-
sure that will provide the best copy. For manual
typewriters, the typing pressure lever should be
set to a medium or light position for best results.

• A Ditto master should be left in the type-
writer when errors are corrected. The typewriter
platen should be turned until there is enough
room to separate the perforated overlay from the
carbon backing. A razor blade or other sharp-
edged instrument should then be used to lightly
scrape the carbon deposit of the incorrect charac-
ters from the back of the overlay. Next, a clean
piece of Ditto carbon should be placed between
the overlay and the original carbon. Then the
typewriter should be returned to its original po-
sition and the correct letters typed. After the
correction has been made, the temporary carbon
that was used for this correction MUST be re-
moved before proceeding.

• Ditto masters may be reused at a later date
if they are properly stored after the initial use.
The masters should be placed in large envelopes
and separated by flimsy sheets. It is imperative
that they be stored in a flat position to keep them
from becoming wrinkled

The point I am trying to make with the above
discussion about the pre-computer era is that it took
many (fussy, touchy, tedious) steps of careful work
to produce good output, just as it does today in the
world of fancy computer-based systems. Added prob-
lems were that the “desktop” (versus professional
printing) approaches to reproducible typesetting in
the pre-computer era didn’t produce high quality
printing, and there were limits on the number of
copies you could make before the masters wore out.

1.2 Early computer use

I first came in contact with computers when I was
in my junior year in college. While I still contin-
ued to use a typewriter for the next decade or so, I
was also phasing over to using computers for typing
documents, especially those that would be repro-

duced. I started with punch cards and an IBM 025
key punch machine, moved to rolls of punched pa-
per tape with editing using Dan Murphy’s TECO

(tape editor and corrector), continued using TECO

(modified to work with computer files rather than
paper tape) via a Model 33 Teletype and then a
TI Silent 700 as I moved into the world of com-
puter time sharing (where the computer terminal
was in my own office for the first time), used Jeremy
Salter’s RUNOFF (the first word processing program)
on MIT’s CTSS system, MRUNOFF (a version of
RUNOFF for the TENEX operating system), and
briefly touched troff/nroff in the early years of UNIX.
This computer-based world allow editing (e.g., with
TECO) and reprinting of the actual raw text of a
document or, eventually, inclusion of typesetting
commands that would be interpreted by RUNOFF,
MRUNOFF, and troff/nroff to produce the final doc-
ument which could then be reproduced.

In the mid- to late-1970s, I first used a personal
computer — an Apple II — but only to run VisiCalc.
I was still doing word processing using MRUNOFF

on TENEX. In 1981, IBM announces its PC and I
got one for the following Christmas, I believe. My
wife began using WordStar, and I helped her because
I was familiar with command-based word process-
ing from MRUNOFF which my friend Rob Barnaby
(developer of WordStar) had also used.

1.3 Word and WYSIWYG

I don’t remember when, but before too long (perhaps
on the first PC AT) I began using the WYSIWYG

PC-Word for DOS (based on the ideas of Charles Si-
monyi). Then I converted to using the Mac and Mac-
Word which seemed to be where the forefront of Word
development was taking place. MacWord was some-
what incompatible with PC-Word, but my PC-Word
files converted over the MacWord pretty well, al-
though my memory is that the very straight forward
style sheets of Word for DOS were no longer quite so
straight forward with MacWord and I couldn’t find
some other features I had been using with PC-Word.
I used MacWord for about eight years. In the early
1990s I decided to convert back to using an IBM PC
using a Windows-based DOS operating system and
then Win 3.1, but I discovered that my original Word
files for the early PC that had been converted to Mac-
Word did not convert back to the later versions of
PC-Word version well. This was quite distressing to
me. Moreover, after each of these changes I could not
find various capabilities I was used to using—they
were perhaps still there but apparently had moved
or how they were executed had changed.

1002 TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting

A lifetime as an amateur compositor

As time went by and I continued to use Word as
part of Microsoft’s Office Suite, I became increasingly
annoyed at Word. Bigger, more complicated releases
kept coming out, and in time there was pressure from
people with whom I exchanged Word files to upgrade
to the latest version because earlier versions couldn’t
easily handle files from later versions without the
person using the later version explicitly saving the
files in the format of the earlier version, something
many Word users didn’t even know how to do. Also,
each new release tended to again change how one
called for various capabilities to be executed, while in
time Microsoft stopped shipping hard copy manuals
with Word from which one could learn such things
(Microsoft increasingly forced users to depend on
on-line documentation which doesn’t work so well
when you don’t know how to ask for what you want
to know about). Also, each new release tended to try
to do more things automatically for me, and it took
more and more work to turn off all the “help” it was
trying to provide to me—help that in many cases
actually made things harder for me (while it didn’t
help me by providing powerful editing functions, e.g.,
using regular expressions).

1.4 Breaking with Word; choosing TEX

My level of annoyance and frustration grew and grew,
and eventually I made the decision to stop using
Word for significant writing projects and to seek
an alternative. Before I go on about my alternate
approach, I must emphasize that I still use Word reg-
ularly for short, one-off projects (e.g., a short letter
that I will not need to access on-line at a significantly
later time) and when I work with someone who uses
Word for his or her document preparation.

I chose to use LATEX as my alternative to using
Word for document preparation for several reasons:

• It had a visible, non-proprietary, documented
markup with a simple, plain text syntax that I
was confident would allow me to reuse text in
different documents over the years.3

• I was already familiar with command-based
word processing and (as a computer program-
mer at heart) liked what I know about TEX’s
programmability. I also welcomed the prospect
of being able to use a powerful text editor again
as part of my document editing process (more
about this in section 3).

3 Word’s hidden markup and WYSIWYG editing means
that it is often hard to tell how something got to be the way it
is. Also, since many Word users don’t use style sheets, format-
ting (for instance, of a subsection title) might be done one way
for one subsection and another way for another subsection,
increasing the probability of inconsistencies in the output.

• I had been involved with religious arguments
about which of PageMaker, FrameMaker, or In-
terleaf was the best tool in various situations;
and, from what I knew then, they also had some
of the same problems as Word in terms of hid-
den markup and pressure on users to adopt new
releases that obsoleted prior releases. I also
was definitely looking for something that did
not involved a graphical user interface (GUI) —
something that required less mouse clicks. So, I
didn’t seriously investigate the just mentioned
systems.

• I am a great admirer of Donald Knuth and
thought it would be nice to try the system he
developed.
Part of my preference for LATEX over Word

comes from the fact that all of the markup is in a file
where I can see it and change it rather than it having
to be accessed by various menus and being largely un-
seen (except in its effect) in the document. To take a
simple example, suppose I wanted to make the word
“brown” in the phrase “quick brown fox” be bold. In
Word I would select “brown” with the mouse, pull
down the Format menu, click the Font item on the
menu, click Bold in the Font Style column, click OK,
and then the text would appear in the document in
bold when displayed or printed (alternatively I could
type control-B after selecting the word “brown”). To
do the same thing in LATEX, I would change the text
“quick brown fox” to “quick \textbf{brown} fox”
with my text editor, and “brown” would display in
bold when my LATEX file was compiled.

No doubt there are ways in Word to do many if
not all of the things I now do with LATEX, but I find
them mostly easier to find and do in LATEX.

As an aside, another aspect of Word that annoys
me is that it is forever guessing what I want. For
instance, if I type an explicit new-line (Return key),
Word may decide to capitalize the first word of the
next line, which may or may not be right. When I
select some text with the mouse in Word, it often
chooses different text than I touch with the mouse,
for instance an extra space. Much or all of this can
probably be turned off and I turn off as much as I can,
but I never seem to be able to turn off everything;
and, while Word’s “help” sometimes does result in
what I want, it seems more often to choose what
I don’t want. LATEX never seems to cause me this
problem, which is not to say there are not other
problems with LATEX.

I don’t remember what TEX distribution—I
downloaded something from the Internet— I tried
first using NotePad on the PC for my editing. I do
remember buying The TEXbook, and then quickly

TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting 1003

David Walden

discovering LATEX which I experimented with a little
bit. Then, I bought a copy of PCTEX on the theory
that it would be nicely packaged, and I used it for
a while but grew dissatisfied with the power of its
editor. Then I found and downloaded WinEdt and
MiKTEX. Later I bought and tried the Y&Y distri-
bution, but I could never get it to work well; I did
buy and make good use of the VTEX distribution
for one particular project, but again I didn’t like its
editor. I ended up using WinEdt (and occasionally
EMACS for things that seemed harder to do in Win-
Edt than in EMACS) and MiKTEX for a number
of years, most recently obtained as part of TUG’s
ProTEXt distribution.

2 Why I use LATEX, particularly for
writing books

Two reasons typically given for using LATEX are for its
math support and for very nice looking typesetting.
Neither of these is particularly important to me: I
rarely have any math in my writing (but it is nice to
be able to handle it easily in those rare cases where
I do have it); I have a pretty undiscerning eye when
it comes to typesetting, and what LATEX produces is
more than good enough for me.

The things that matter most to me about LATEX
are:

1. its programmability and modularity
2. that I get to use a powerful editor with it
3. that the mark-up is clearly visible to me and

can be changed directly with a text editor
4. its capabilities for explicitly specifying cross-

references, maintaining bibliographies, and auto-
matically numbering chapters, sections, figures,
tables, footnotes, etc., which permit easy reor-
ganization of text within documents and reuse
in other documents

5. its relatively slow pace of change and great con-
cern among the developers for backwards com-
patibility

In other words, my use of LATEX is primarily about
productivity. (Of course, there are certain limitations
on this productivity such as when I finish writing
a book using LATEX and the publisher tells me I
must convert the text to Word and the figures to
PowerPoint slides for input into the compositor’s
typesetting system.)

Much of my work using LATEX is on book length
documents. For these I have compiled a more or
less standard set of techniques that I feel help me
be more efficient. I don’t claim that the techniques
I use are the techniques of a master; in fact, I view
myself as an intermediate user of LATEX—I know

enough to make LATEX jump through a few simple
hoops, but not enough to know if my approaches are
recommended or if they include some bad habits.

In my experience, publishers don’t think much
about the design of a book until they have the com-
pleted manuscript in hand. Since I use LATEX to
develop the original manuscript, I have to make lots
of temporary design decisions, and I want to be able
to change these decisions with a minimum of work
when the publisher does begin to deal with the de-
sign. Also, I am currently working on a book that I
will be self publishing, and settling on the design for
this book is an iterative, experimental process where
it is even more important to be able to make changes
throughout the book (for instance, to the style of
figure captions) with minimal work. My experience,
however, should not prevent you from checking if the
publisher of your document already has a standard
style and perhaps even a LATEX class file that you
can use from the the outset of your writing. In any
case, my emphasis here is not on the methods of
representing preferences for appearance; my empha-
sis is on methods for easily and repeatedly changing
the overall document appearance as well as on other
methods for working efficiently on large documents.

Some of what I am about to describe for work-
ing efficiently on books or other long documents is
probably already well known to many readers; per-
haps you can make suggestions for how I might do
things better.

(At several points in the following, I have in-
cluded in parentheses discussions of basic TEX and
LATEX issues that reviewers and others who have read
drafts of this paper have asked me about that are not
actually on the subject of book-writing productivity.
Perhaps these parenthetical notes should have been
footnotes, but I was too lazy to deal with the need
for alternatives to \verb in footnotes.)

2.1 Include files

Suppose I am working on a book entitled Break-
through Management, as I have been recently. I cre-
ated a top level file named bt.tex with the following
contents:

\documentclass{btbook}

\begin{document}

\include{titlepages}

\include{preface}

\include{surviving} % a chapter

\include{rapid} % another chapter

. . . % more chapters

\include{acknowledgements}

\include{bibliography}

\include{bio}

1004 TUGboat, Volume 0 (2060), No. 0 —Proceedings of the 2060 Annual Meeting

A lifetime as an amateur compositor

\include{index}

\end{document}

The text from included files appears to LATEX as
if it was in the file bt.tex in place of the \include
commands. In this way, I contain the text related to
each chapter and other parts of the book in its own
file. I let LATEX take care of numbering the chapters
and figures (or whatever) within chapters. If I later
decided to change the order of chapters, I just change
the order of the \include commands in the bt.tex
files, and LATEX automatically renumbers everything.

To work on one chapter at a time, my file bt.tex
evolved to include many \includeonly commands,
e.g.,

\documentclass{btbook}

%\includeonly{preface}

%\includeonly{surviving}

\includeonly{rapid}

%includeonly{surviving,rapid}

. . .

\begin{document}

\include{titlepages}

\include{preface}

\include{surviving} % a chapter

\include{rapid} % another chapter

. . . % more chapters

\include{acknowledgements}

\include{bibliography}

\include{bio}

\include{index}

\end{document}

In the above example, only the file rapid.tex gets
compiled when I run LATEX on the file bt.tex. In this
10 chapter book I had a couple of dozen \includeonly

commands in the bt.tex file that I could comment in
and out to work on each chapter individually and with
various combinations of related chapters.

(Because the \include commands result in text
being typeset, they must follow the \begin{document}

command. The \includeonly commands must go in the
preamble or else LATEX complains.)

2.2 Custom class file

I have created a file btbook.cls which is my own personal
class file for this particular book. This file is processed
when LATEX sees, at the beginning of the file bt.tex,
the command \documentclass{btbook}. The first three
lines of the file

\NeedsTeXFormat{LaTeX2e}[1994/12/01]

\ProvidesClass{btbook}[2006/01/21 BTbookclass]

\LoadClass{book}

define the class for this book to be named btbook and
to be an augmentation of the LATEX book class.

The rest of the lines of the file are read and executed
when LATEX is run as if they were lines of text immediately

following the \documentclass command in the bt.tex

file.
(If your publisher already provides a LATEX class

file, you can still collect all of the sorts of things I de-
scribe below in their own file and \input that file in
the preamble rather than just putting all these things
directly in your preamble. I prefer not to have much in
my preamble beyond the \includeonly{...} commands
that I am constantly commenting in and out.)

2.3 Packages

Next in the class file come the list of packages I use for
writing this book.

% Palatino is basic roman font

\RequirePackage{mathpazo}

% Helvetica is sans serif font

\RequirePackage[scaled=.95]{helvet}

% Courier is typewriter font

\RequirePackage{courier}

% for including images

\RequirePackage{graphicx}

% for formatting URLs

\RequirePackage{url}

%to be able to rotate figures

\RequirePackage[figuresright]{rotating}

% for dropped caps

\RequirePackage{lettrine}

% for tighter list spacing

\RequirePackage{paralist}

\setlength{\pltopsep}{.05in}

% for comment environment

\RequirePackage{comment}

% for endnotes with reformatted numbers

\RequirePackage{dw-endnotes}

%\doublespacing

\RequirePackage{setspace}

When I find I need to use another package, I add another
\RequirePackage line to this list. (As I understand it,
RequirePackage does the same job as \usepackage ex-
cept it doesn’t allow the same package to be loaded twice
which apparently might cause problems in some cases.)

Notice that the package name in one case includes
the characters dw-. This is my convention for noting
a package that I have modified. In such cases, the file
of the modified package is in the same directory with
the rest of the files for this book or in the local changes
part of my texmf data structure. I seldom understand a
package I am modifying; I typically use a hit and miss
approach to change stuff until I get the results I want.

Copy editors who edit on hard copy like double
spacing, and I can provide that with a one character
change — uncommenting the \doublespacing command
on the last line above that loads the setspace package.

2.4 Miscellaneous useful macros

The following macros provide a few capabilities I use
relatively frequently.

% space around em-dashes

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1005

David Walden

\newcommand{\Dash}{\thinspace---\thinspace}

% mark text that needs checking

\newcommand{\CK}[1]{\textbf{CK #1}}

% marginal note to myself

\newcommand{\manote}[1]{%

\marginpar{\scriptsize To do:\\#1}}

% cut-in title

\newcommand{\partitle}[1]{%

\medskip\noindent\textbf{#1}}

%change function of \url command

\let\Originalurl=\url

\def\url#1{{\fontsize{10.7pt}{13.05pt}

\Originalurl{#1}}}

For some documents I have worked on, I have had many
more such miscellaneous useful macros.

Anyone trying to improve productivity using LATEX
who doesn’t already define his or her own macros should
learn to do so. User-defined macros allow significant im-
provements in efficiency. For instance, the first macro
above defines the command \Dash{} to be an abbrevia-
tion for the character string \thinspace---\thinspace

which results in an em-dash being typeset with a little
bit of space on each side of it, as in aaa — bbb. It is less
characters and probably more reliable to type \Dash{}

many times in a book than it is to type the characters
\thinspace---\thinspace{} many times. In my view,
however, the greater benefit of defining the \Dash com-
mand comes when my publisher tells me that its style is
closed-form em-dashes (no space on each side, i.e., aaa—
bbb) or a more open form (aaa — bbb). To implement
either of these changes throughout the book, I merely
redefine \Dash, e.g.,

% no spaces around em-dashes

\newcommand{\Dash}{---}

or

% full spaces around em-dashes

\newcommand{\Dash}{ --- }

and recompile my document. Containing such style con-
ventions within a few lines of a large document and being
able to change the style throughout the document with
only a few key strokes is an enormous advantage. (I’ll
give a more complex example of such containment when
I discuss macros for figures and tables below.)

To redefine a command that already exists in LATEX
or has been defined by a package that has already been
loaded, for instance to define a variation on \url as I
do in the last two lines of my group of miscellaneous
useful macros, I have to use the \renewcommand com-
mand. The \renewcommand works just like \newcommand

except that LATEX doesn’t complain with \renewcommand

if I try to give a definition to a command that already
exists — a good thing to be warned about when one uses
\newcommand. (In the next subsection I give another
redefinition example —redefining \footnote).

2.5 Footnotes and endnotes

In the case of \RequirePackage{dw-endnotes}, I am us-
ing the endnotes package, modified slightly to change
the format of the note numbers.

Typically, I put footnotes on the bottom of text
pages where they are referenced, at least while I am draft-
ing chapters and want to be able to see the notes without
having to turn a bunch of pages. However, publishers
tend not to like having footnotes — it makes a book look
too academic to be popular, in their view. Thus, before
actually publication, I often find myself converting all
my footnotes to endnotes. The next commands in my
class file do this.

%comment out to not have end notes

\renewcommand{\footnote}{\endnote}

\newcommand{\dumpendnotes}{%

\medskip

\begingroup

\setlength{\parindent}{0pt}%

\setlength{\parskip}{1ex}%

\renewcommand{\enotesize}{\normalsize}%

\theendnotes

\endgroup

\setcounter{endnote}{0}}

First, the \footnote command is redefined to be the
\endnote command; this avoids me having to replace
every instance of \footnote with \endnote. Then the
class file defines a command (\dumpendnotes) that can
go at the end of each chapter to dump the chapter’s end-
notes, formatted as I want them to be. If the command
\dumpendnotes was already defined in LATEX or some
other package, LATEX would warn me because I didn’t do
the definition with \renewcommand.

2.6 Formatting figures and tables

The next set of commands in the class file have to do
with changing the format of figure and table captions
without actually modifying a LATEX or package file. The
LATEX default does not use bold face for captions and
uses a period rather than a hyphen between the the
chapter number and figure number within a chapter. The
following changes patch LATEX to follow my preference
for bold face and hyphens.

\long\def\@makecaption#1#2{%

\vskip\abovecaptionskip

\sbox\@tempboxa{\textbf{#1}. \textbf{#2}}%

\ifdim \wd\@tempboxa >\hsize

{\textbf{#1}. \textbf{#2}\par}

\else

\global \@minipagefalse

\hb@xt@\hsize{\hfil\box\@tempboxa\hfil}%

\fi

\vskip\belowcaptionskip}

\renewcommand \thefigure

{\ifnum \c@chapter>\z@ \mbox{\thechapter-%

\fi\@arabic\c@figure}}

1006 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

A lifetime as an amateur compositor

\renewcommand \thetable

{\ifnum \c@chapter>\z@ \mbox{\thechapter-%

\fi\@arabic\c@table}}

(I do not have to bracket these lines, top and bottom,
with \makeatletter and makeatother commands as I
would have to if this patch was in the preamble of my
document; the at-sign is a letter by default in class files
and packages. Some readers may be back a step, at the
question of, “What is it about at-signs anyway?”: The
answer is that the files for basic LATEX, for class files,
and for other packages are full of macros names that in-
clude an at-sign (@), e.g., a macro named \@makecaption

is defined at the beginning of the above example. My
understanding is that an at-sign is used in low level pro-
gramming of LATEX, class files, and packages to create
macro names that can’t accidentally conflict with names
that may be defined by users not doing such LATEX “sys-
tems programming.” An at-sign is normally not a letter
and thus cannot be part of a macro name. However,
in the above example I want to patch low level LATEX
code that includes at-signs in its macro names; if I was
trying to make this patch in my preamble (as I used to
do before I learned to make some patches in a personal
class file), I would have to tell LATEX to temporarily turn
at-signs into letters, make the patch, and then turn them
back into non letters (other) so the rest of my program
could use @ in the normal way where it is not a special
character of any kind.)

Perhaps there is a caption package that would allow
such changes without patching LATEX, but I was shown
how to make this patch a few years ago and it works, so
why bother trying to find and learn a new package?

Next in my class file come a set of definitions for
commands I use to include graphics. I seldom insert
\begin{figure} and \end{figure} commands directly
into my documents; I do, from time to time, insert the
commands \begin{table} and \end{table}. It is in-
evitable that, before I am done with a big document,
I will want to change the formatting relating all figure
and tables—perhaps several times. Thus, I use macros
for inserting almost all figures (or tables) such that I
can make changes to formatting relating to the figures
by making changes to only a few lines in the relevant
macros.

%switch argument among pdf, eps, etc.

\newcommand{\figfiletype}{pdf}

%tell LaTeX directory path to figures

\graphicspath{{figures/}}

%commands to display file name, or not

\newcommand{\DFN}[2]{%

\texttt{\small[#1 #2]}}

%\newcommand{\DFN}[2]{}

\newcommand{\snfig}[3]{%scaled numbered figure

%drop htb and %s for single page figures

\begin{figure}[htbp]

%\vbox to \vsize{%

\hfil\scalebox{#3}{

\includegraphics{#2.\figfiletype}}\hfil

\caption{\label{fig:#2}#1 \DFN{#2}{#3}}

%\vfil

%}

\end{figure}

}

\newcommand{\sntab}[3]{%scaled numbered tables

\begin{table}[thbp]

%\vbox to \vsize{%

\centering

\caption{\label{tab:#2}#1 \DFN{#2}{#3}}

\smallskip

\scalebox{#3}{

\includegraphics{#2.\figfiletype}}

\label{tab:#2}

%\vfil

%

\end{table}

}

\newcommand{\unfig}[2]{%scaled unnumbered fig.

\begin{figure}[htbp]

\hfil\scalebox{#2}{

\includegraphics{#1.\figfiletype}}\hfil

\label{fig:#1}\centerline{

\DFN{#1}{#2}}

\end{figure}

}

%sideways scaled numbered figure

\newcommand{\swsnfig}[3]{

\begin{sidewaysfigure}

\centering

\scalebox{#3}{

\includegraphics{#2.\figfiletype}}

\caption{\label{fig:#2}#1 \DFN{#2}{#3}}

\end{sidewaysfigure}

}

For instance, the macro \snfig above takes three
arguments. The text for a figure caption, the unique part
of the file name for the graphic to be included, and a
scale factor for the graphic, e.g.,

\snfig{This is the caption}{figure3-31}{.8}

The full name of the file to be included is the con-
catenation of the part of the file name that came from the
second argument of the macro call, the directory that is
specified by the \graphicspath command (an option of
the \graphicx package) as the place LATEX searches for
figures, and the \figfiletype definition as the file name
extension. The latter is useful because sometimes all of
my figures are .eps files and sometimes they are .pdf

files, and sometimes I switch between these two formats
at different times in the production of the book. (When
using .eps format, I compile using LATEX and a dvi-to-
pdf conversion; when using .pdf format, I use pdfTEX
to compile. If the graphic format was changing from

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1007

David Walden

file to file within the document, I would instead specify
the format as another argument to the \snfig command.
[However, Will Robertson has recently pointed out to me
that if I leave the extension off, \includegraphix will
pick the appropriate extension: .eps for LATEX and .pdf
for pdfLATEX.])

While I am drafting and revising a book manuscript,
I want to be able to look at a figure in the printed output
and know what file I need to modify to change the figure.
Thus, my macros for including figures and tables causes
the file name to be included in the printed output in
small letters enclosed in small square brackets, using
the macro \DFN. When it comes time to create the final
manuscript, I swap to a definition of \DFN that produces
nothing and recompile the book’s LATEX files.

The definitions of \snfig and \sntab also include
several lines that are commented out. Professional edi-
tors often like to see the manuscript with figures or tables
each on its own page rather than in-line with the text.
Commenting in these few lines puts the figures and tables
of the whole book on their own pages.

The \snfig, \sntab, and \swsnfig macros also de-
fine labels for cross referencing the figures with \ref

or \pageref commands. A slight limitation of my im-
plementation is that I cannot reuse the same figure or
table file without confusing the labeling. However, it is
easy enough to create a duplicate figure or table with a
different file name.

I typically create all figures and most tables outside
of TEX itself and include them from separate files. If I
found myself inserting very many tables directly into my
.tex files rather than including them from graphics files,
I would define a mytable environment so that I could
still contain and simply change the sort of formatting I
have discussed.

2.7 Thought breaks

The next group of commands (mostly commented out)
are various options for indicating what I call “thought
breaks” — places where formatting indicates a change of
topic big enough to highlight but not big enough to have
its own section or subsection title.4 (These commands
are defined with \def because I know they will pick up
the correct arguments this way, and I am not sure enough
of the details of how \newcommand works. I understand
the details of how TEX defines a macro and then collects
its arguments when the macros are called because Knuth
explains it pretty completely in The TEXbook. In partic-
ular, TEX allows macro calls where the arguments of the
macro are not all embedded in pairs of braces. However, I
have never stumbled across a rigorous explanation of how
a macro defined with \newcommand collects its arguments
and thus in what situations arguments not in braces will
be recognized or to what extent LATEX defined macros
can have both of what Knuth calls delimited and unde-

4 See my PracTeX Journal 2005-4 “Travels in TEX Land”
column (http://www.tug.org/pracjourn/2005-4/walden/)
for examples of thought breaks.

limited arguments— and I have not bothered to study
the LATEX code to figure it out. Consequently, out of
ignorance, I use \def to define macros which don’t have
their arguments delimited by braces.)

\begin{comment}

\def\newthoughtgroup#1{\bgroup

\afterassignment\BigFirstLetter \let\next=}

\def\BigFirstLetter#1{

\bigskip\noindex{\Large#1}}

%adapted slightly from Victor Eijkhout on ctt

\def\newthoughtgroup#1{\BigFirstLetter#1$}

\def\BigFirstLetter#1#2${

\bigskip\noindent{\Large #1}#2}

\end{comment}

\def\newthoughtgroup#1{%

\bigskip\noindent {\large #1}}

\begin{comment}

\def\newthoughtgroup{%

\bigskip\noindent }

%big bold dropped cap letter with rest

% of word small caps

\def\newthoughtgroup#1#2 {

\bigskip\noindent\lettrine{#1}{#2}\ }

\def\thoughtbreak{\vskip2pt

\centerline{$^{\vrule width2cm height 1pt}$}

\vskip2pt\noindent}

\end{comment}

The version of \mythoughtgroup currently not com-
mented out indicates the new thought by a vertical
space and a slightly bigger capital letter at the beginning
of a non-indented paragraph.

2.8 Chapter formatting

The final set of commands in my class file has to do with
with the beginning and ends of chapters. At the begin-
ning and ending of each chapter I insert some commands
that I can change either by changing the commands
themselves or changing macros in the class file.5

\RequirePackage{fancyhdr}\pagestyle{fancyplain}

\newcommand{\mypartname}{}

\newcommand{\mychaptername}{}

\lhead[\fancyplain{}{

\thepage}]{\fancyplain{}{}}

\chead[\fancyplain{}{

\mypartname}]{\fancyplain{}{\mychaptername}}

\cfoot[\fancyplain{}{}]{

\fancyplain{\thepage}{}}

5 When I first started customizing my page headings a
few years ago, I used the fancyheadings package; recently I
have learned that the package fancyhdr has replaced fancyhead-
ings, but I have not yet bothered to rewrite all the heading
commands to use the new forms that come with the fancyhdr
package and don’t use the fancyplain device.

1008 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

A lifetime as an amateur compositor

\rhead[\fancyplain{}{}]{

\fancyplain{}{\thepage}}

\newcommand{\EMPTYPAGE}{\clearpage

\thispagestyle{empty}\cleardoublepage}

\newcommand{\ENDCHAPTER}{\dumpendnotes}

\newcommand{\fENDCHAPTER}{\vfil\dumpendnotes}

In the class file for the book from which I drew these
illustrations, there are a couple of alternative macros that
I can include at the end of each chapter to dump the
endnotes, but the end-of-chapter macros could be defined
to cause other actions and outputs. In this book (which
has only 10 chapters) I do not combine everything in a
single beginning-of-chapter macro (e.g., \BEGINCHAPTER),
but I have done this with some books (e.g., the 20 chap-
ter book I am also currently working on). The typical
beginning-of-chapter commands for the chapter with the
file name rapid.tex (mentioned earlier) are

\EMPTYPAGE

\chapter{Rapid Change in a Global World}

\label{ch:rapid}

\renewcommand{\mychaptername}{Chapter %

\thechapter: Rapid Change in a Global World}

2.9 Using a fully developed class

For some books I have included different or additional
capabilities in my custom class file.

Obviously, I could also use a fully developed class
such as memoir rather than making lots of modifications
of my own to the LATEX’s standard book class. However, I
suspect I would still use some of the ideas I have described
above.

It is clear that TEX and its derivatives with their
explicit, visible markup provide a strong base for incre-
mentally building a personal library of techniques that
are easy to apply from one project to the next.

3 The possible benefits of a separate
editor

Using a word processor such as MS Word that has invisi-
ble, undocumented, proprietary markup means you have
to use its built-in, WYSIWYG editor that knows about
that markup. This has two potential disadvantages: (1)
GUI-based editing often takes a lot more key strokes to
do simple things than an editor like WinEdt or EMACS
(I gave an example of this in section 1 and provide ad-
ditional examples below); (2) an editor like MS Word’s
does not seem to have a lot of useful features that an
editor like WinEdt or EMACS has.

Many of the ideas in this section are probably rele-
vant to any typesetting system that has editing capability
(like those I describe below). For all I know, MS Word
can do many of these things; but, as I said in the first
section, a number of years ago I lost interest in strug-
gling to find stuff buried in all Word’s menus, dealing
with its ever changing user interface, and its planned-
obsolescence-and-forced-upgrades business strategy.

3.1 Two ways to make a change
throughout a document

In the last section I sketched the benefits of using macros
for some sequences of chapters (for instance, \Dash{} for
---) that enable the replacement sequence to be changed
everywhere in a document by just changing the definition
of the macro in one place. Another option for making
a change to the same sequence of characters throughout
a document is to use a text editor’s Replace All com-
mand. For instance, suppose I hadn’t used a macro for
em-dashes and instead had closed form instances of ---
throughout my document, e.g., “this is the end—the end
of the line.” And then suppose I decide to change the
style to uses semi-open form em-dashes, e.g., “this is the
end—the end of the line.” With my editor I can do a
Replace All of --- by \thinspace---\thinspace{}. If
the document is broken up into separate files for each
chapter, it will be good if the text editor has the option
for doing the Replace All over all documents open in the
editor instead of only in the document where the cursor
currently is.

Here is another example of a simple text replacement
of the entire document. Suppose I decide (for some
reason) to replace all en-dashes by hyphens. Then I can
do the following sequence of three steps (the first and
third steps are to avoid accidentally changing instances
of --- into --):

Replace All --- with #X#X#

Replace All -- with -

Replace All #X#X# with ---

Now suppose I want to add a fourth argument to
every instance of the macro call \snfig{ }{ }{ }

(see definition and discussion of this macro in subsec-
tion 2.6), that is, change the macro call formats to
\snfig{ }{ }{ }{ }. Of course, one approach is
to search for each instance of \snfig{, then move the
cursor to after the third pair of braces, and then type
the fourth pair of braces. However, if your text editor
has a capability for dealing with regular expressions, you
can make this change more easily (the last book I wrote
had a couple of hundred instances of \snfig).

While I won’t get into the specific format of any
particular editor’s representation of regular expressions,
they would do something like the following in our example
case.

Replace All \snfig{(.*)}{(.*)}{(.*)}
with \snfig{$1}{$2}{$3}{}

Everything in the Replace All command that is in a
typewriter format is literal characters to be replaced. The
characters in italics in the first part of the command are
special characters that match any number of characters
between balanced braces. For instance, in the command

\snfig{Caption title.}{file-name}{.5}

the first instance of (.*) would match Caption title.

The second instance of (.*) would match file-name, and
the third instance would match .5. Better than that,
the editor stores each matched set of characters in its

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1009

David Walden

own place for later reuse, as in the second half of the
above command. The part of the command after the
word “with” says to replace the \snfig command that
was matched with all the same literal characters for the
command names and braces, but to put the first match
text in place of $1, the second match text in place of $2,
and the third matched text in place of $3, and to add an
extra pair of literal braces at the end of the replacement.
Thus,

\snfig{Caption title.}{file-name}{.5}

is turned into
\snfig{Caption title.}{file-name}{.5}{}

and the same is done for every other instance of \snfig
in each case properly maintaining the argument text
through the replacement step.

The above example may need some tweaking if the
instances of the command being changed sometimes span
new line boundaries, but typically this also can be han-
dled, as can be much more complex instances of detecting
what should be replaced and what should not be in vari-
ous instances. In fact, depending on the editor’s particu-
lar regular expression capability, the earlier example of
replacing en-dashes by hyphens perhaps could have been
done with one Replace All using a regular expression to
search of -- not followed by a third -.

In section two I recommended that anyone not al-
ready using LATEX macros should learn to use them. I
recommend the same thing about using regular expres-
sions if your editor supports them. They won’t be needed
as often as macros, but when they are needed they are a
major productivity increaser.

3.2 Other editor features

All of the serious text editors I have used allowed me to
mark the cursor position with a couple of key strokes
(e.g., Alt-F11 in WinEdt), move the cursor somewhere
else (for instance to select some distant text and cut it,
and then jump back to the first cursor position (e.g., Cntl-
F11), where I might paste the text cut from elsewhere
in the document.6

Text editors such as I have in mind also typically
have provision to have multiple text buffers rather than
just one cut-and-paste clipboard.7 I gave an example of
this in the regular expression example in subsection 3.1,
where three bits of text were simultaneously saved from
the replaced string of characters for placement in the
replacement string. With multiple places to save text, it
is also possible, for example, to search-for-and-cut one

6 I don’t claim the none of these features are available in
various editors that are packaged with commercial versions
of TEX; I hope they are. I am only suggesting that you find
an editor that supports such capabilities. What I do know is
that with each new release of MS Word I find it harder and
harder to find such features, if they exist at all, while they are
easy to find in the two text editors I currently use regularly
(WinEdt and EMACS).

7 Alex Simonic, the developer of WinEdt, the editor I
mostly use, showed me how to write macros to provide multi-
ple text buffers in WinEdt.

bit of text, search-for-and-cut another bit of text, search-
for-and-cut a third bit of text, and then paste together
at some other point in the file, saving (in this example)
several moves of the cursor in comparison with an editor
with a single clipboard.

To give another example of the usefulness of mul-
tiple text buffers, I often find something on a web page
and want to copy something from the page as a quote
in a document I am writing and copy the URL as the
source of the quote. Without multiple text buffers this re-
quires the following sequence: (1) select text to be copied,
(2) copy to clipboard, (3) switch window to other doc-
ument, (4) position cursor, paste contents of clipboard,
(5) switch window for first document, (6) select URL
text, (7) copy to clipboard, (8) switch window to other
document, (9) position cursor, (10) paste contents of
clipboard. With multiple text buffers it requires: (1) se-
lect text to be copied, (2) copy to buffer A, (3) select
URL text, (4) copy to buffer B, (4) switch window to
other document, (5) position cursor, (6) paste contents
of buffer A, (7) reposition cursor, (8) paste contents of
buffer B. The latter method it not necessarily less key
strokes (the macros I have for WinEdt take 12 steps),
but it is somehow easier for me not to switch windows
and have to refind my place as often.

The fact that LATEX is not locked to a particular
editor also means that each participant in a collaborative
project can use the editor with which he or she is most
familiar. (Collaboration is also made easier because there
is much more compatibility from release to release of TEX
and LATEX, even with multiple providers, than there is
from release to release with many non-TEX commercial
products. For instance, MS Word seems to go out of its
way to enforce inter-release incompatibility in a way ap-
parently aimed at forcing all collaborators to all upgrade
to the same release.)

Using a text editor in conjunction with LATEX with
its explicit markup also has advantages. For instance,
it is easy to search for an italicized version of a word
(i.e., search for \textit{word}) as distinct from a non-
italicized version of the same word. Similarly, it is pos-
sible to search for all headings of a certain level (for
instance, all instances of \subsection); with a system
with implicit markup (e.g., MS Word) one might have
to search for the words of each subsection title.

In subsection 2.1 I showed the use of \include files.
This works because LATEX has the provision for specifying
in one file a list of files to be included as if they were text
in that first file. The editor I mostly use, WinEdt, also
supports this; it knows enough about LATEX to search
the highest level file for instances of \include and gives
me a list of visual tabs to the various files to be included;
this makes it very easy for me to move among the various
in a longer document.

I could give an unlimited number of examples what
powerful text editors can do once one breaks free of
the limitations of hidden, proprietary, undocumented
markup and those built-in editors whose graphical user
interfaces eliminate powerful editing capabilities as part

1010 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

A lifetime as an amateur compositor

of providing a point-and-click environment to the user.
One of the best things is that I can use the same editor
with which I have become facile from application to
application. (Also, if several authors are collaborating,
they can all use their own preferred editor, and — perhaps
more importantly — they don’t all have to have the same
version of Word installed.)

4 Conclusion

To conclude, I give some additional opinions on a couple
of thoughts I hinted at in the earlier sections and one
additional opinion.

4.1 Conservation of hassle

In my observations covering many decades, it has always
taken many fussy steps to do anything involving typeset-
ting for reproduction. The computer era has eliminated
many physical steps, each of which required its own sort
of skill and complexity. However, the computer era hasn’t
done anything to decrease the total number of steps—
they are just done with a keyboard and mouse now and
the skill is in knowing what commands can do what you
need and where to find them. What computer-based ap-
proach is best is a matter of personal choice—they are
all filled with hassle. My own choice has evolved to be a
powerful, explicit typesetting language (LATEX) combined
with a powerful text editor. Some people argue that the
WYSIWYG approach is easier. On average, however, I
see the WYSIWYG approach as just as much work for
the same task: A simple task in Word also tends to be
simple in LATEX; a more advanced task (e.g., inserting
a cross-reference) seems more straightforward to do in
LATEX than in Word. As one uses more and more of
LATEX’s power, the same task typically seems more and
more difficult to do in Word as well, and my frustration
level seems to grow faster with Word. Since most users
use Word in only trivial ways, Word is pretty trivial to
use at that level, but then so is LATEX at that level.

4.2 The assertion that LATEX is hard to
learn

I have no doubt that most people could learn to use
LATEX and a good text editor if they saw it as beneficial;
LATEX and a text editor at the intermediate level of so-
phistication at which I use them are no more complex
than trying to use Word for the same task (and I mostly
think they are less complex than Word). Think about all
the other, fairly complex things people master in their
lives — cooking, knitting, growing flowers, fly tying, and
the rules of baseball. By comparison, there is nothing
inherently too difficult about using LATEX—it’s only a
question of learning enough to see its comparative bene-
fits (and cheaper price). And anyone who can learn to use
Word at a high level with all its particular weirdnesses
(and changes to the user interface with each release) can
surely also learn to use LATEX at the same level.

4.3 Using what everyone else is using

I believe the main argument against LATEX and for Word
is ubiquity of use. People use Word because everyone
else does—their collaborators, their publishers, etc.—
not because Word is better. If people were interested in
a better word processor, they would use Word Perfect or
perhaps one specialized to their area of writing such as
Note Bene. If the world of TEX is to have the best chance
of snagging and keeping potential LATEX users, we must
offer them a great, if small, community of fellow users.
This brings me to my “pet peeve” about our TEX user
groups. I suggest that no question, however basic, should
every be answered with “read the manual.” If reading
the manual is what should have been done, the answer
should be, “I think page N of document Y at URL Z”
tells you what you want to know. In the real world (i.e.,
the world of MS Word) people don’t read the manual
(recognizing this, Microsoft for the most part has stopped
providing documentation, and what documentation they
do provide is hard to access and understand). If I have
a question about Word, I ask the person at the next
desk, for example, “How do I move the margins in for
a block quote?”; and the person I ask either shows me
without comment or first says, “Oh, that’s easy [perhaps
thinking what an idiot I am for not even knowing that]”
and then shows me how. More generally, most people
don’t read manuals about most things— they just bash
along learning by trial and error and by asking people
how to do things. I have two challenges for people who
monitor the TEX user discussion groups:

1. For people who are tempted to say “read the man-
ual”: Try to say nothing at all. It makes us less
knowledgable users feel pretty bad and chary of ask-
ing another question of the group if there is any
hint from the answerer that we are as dumb or out
of place as we already secretly feel we are.

2. For intermediate and more experienced beginning
users: Don’t hesitate to answer when you know a
useful answer even though you may be pretty much
of a beginner yourself. If we who can still remember
how little we felt we knew when we first started
answer quickly, our intervention can perhaps pre-
clude another less experienced user getting one of
the those dreaded read-the-manual answers. Also,
we may learn something more ourselves when some-
one more knowledgable follows our suggestion with
an improvement.

Acknowledgements

I owe thanks to many sources for what I have learned
about using LATEX — books, the comp.text.tex list, the
texhax list, and many individuals. Of course, none of
them are responsible for lessons I have mislearned.

I can’t remember and acknowledge everyone who
directed me to techniques illustrated in this column; how-
ever I can remember some of them. Karl Berry reviewed
an early version of this paper and earlier told me about

TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting 1011

David Walden

some of the methods I have described here. I also remem-
ber Peter Flynn, Steve Peter, and Steve Schwartz telling
me about particular techniques. Peter Flom, Will Robert-
son, and anonymous reviewers provided many helpful
suggestions for section 2 which appeared in an earlier
incarnation in the 20006-2 issue of The PracTEX Jour-
nal. Will Robertson also carefully reviewed the complete
paper here and made many substantive suggestions for
improvement as well as catching many minor errors.

Biographical note

David Walden is retired after a career as an engineer,
engineering manager, and general manager involved with
research and development of computer and other high
tech systems. More history is at www.walden-family.

com/dave.

1012 TUGboat, Volume 0 (2060), No. 0 — Proceedings of the 2060 Annual Meeting

